Suspension Design using Adams

Rs 30,000(6 Month EMI Available)

View Demo Enroll


Top 5% of the class will get a merit certificate. Course completion certificate will be provided to all students who complete the course. You will receive both e-verified and hard copy of your certificates.


Software that you will learn


Adams Multibody Dynamics & Motion Analysis

Adams is the most widely used multibody dynamics and motion analysis software in the world. Adams helps engineers to study the dynamics of moving parts, how loads and forces are distributed throughout mechanical systems and to improve and optimize the performance of their products.

Job Opportunities


Companies in India that look for similar skill sets

Click here to get a list of companies that you can apply after finishing this course.

What will you learn each week?

Theoretical Concepts Covered:


      1. The need for suspension
      2. Overview of suspension hardware and architecture
          (distinguishing features, pros and cons of each setup)
                i. Double wishbone
               ii. McPherson strut
              iii. Multilink (5-link and trailing arm)
              iv. Torsion beam
               v. Solid axle
              vi. Pushrod and pullrod (FSAE)
      3. Introduction to ADAMS 
                i. Software overview
               ii. Capabilities
              iii. Adams Car module overview
                      a. Motivation 
                      b. Model hierarchy
                      c. Database
                      d. Adams file structure and terminology
                      e. User modes
                      f. Basic operations
                           I. Opening the program
                          II. Interface and tools overview
                         III. Loading a database
                          IV. Working directory
                           V. Opening a model
                          VI. Running a simple simulation
                         VII. Animating and viewing results
                        VIII. Exploring, making changes and saving


Suspension kinematics

     1. Motion of the wheel carrier
          i. Degrees of freedom
         ii. No. of links
     2. Concept of instant center
          i. Equivalent swing arm (front and side view)
         ii. Instant center (front and side view)
        iii. Instant axis of motion
     3. Front view geometry
          i. Front view instant center
         ii. Front view virtual swing armlength and angle
        iii. Camber gradient
                 a. Bump camber
                  b. Roll camber
                  c. Non-linearities
        iv. Bump and scrub and track change
         v. Roll center height
                  a. Kinematic roll center
                  b. Force roll center
     4. Side view geometry
          i. Side view instant center
         ii. Side view virtual swing arm length and angle
        iii. Wheel center longitudinal recession
        iv. Anti charactersistics
                  a. Anti-dive 
                  b. Anti-lift
                  c. Anti-squat


Steering kinematics

      1. Kingpin geometry
               i. Defining the kingpin
              ii. Caster angle
             iii. Mechanic trail
             iv. Scrub radius
              v. Kingpin inclination
             vi. Kingpin offsets
            vii. Steer jacking
      2. Low speed turning geometry
              i. Ackermann
             ii. Turning circle diameter
      3. Steering geometry error
              i. Ride steer
             ii. Roll steer
            iii. Torque steer
      4. Steering ratio
              i. Tire steer angle
             ii. C-Factor 


Ride geometry

      1. Wheel travel
                i. Metal to metal travel
               ii. Jounce bumpers
              iii. Rebound bumpers
      2. Simple quarter car model
                i. Wheel rate 
               ii. Motion rate
              iii. Ride rate 
              iv. Ride frequencies and flat concept
      3. Suspension damping
                i. Need for damping
               ii. Shock absorber design
              iii. Damper characteristics


Suspension compliance

     1. Need for compliance 
     2. Types of compliance 
                i. Longitudinal (braking and traction) compliance 
               ii. Lateral (force and aligning torque) compliance
              iii. Effect on ride and handling


Kinematics and Compliance Testing

     1. Purpose
     2. Types of tests performed
     3. Sample test results 

Suspension Architecture of some popular vehicles

This will help you understand how various kinematics and compliance parameters come together.
Probably not all the following vehicles will be covered - time dependent,
        1. Ford Mustang GT
        2. McLaren MP4-12C
        3. Ford Fiesta (rear suspension)

Adams Simulations


Software Interface

     1. Launching Adams - view and car
     2. Setting up a working directory
     3. Launching Adams from working directory 
     4. Adams help 


The database

     1. Database structure
     2. Configuration files
     3. Acar shared database
     4. Publishing the Acar database
     5. Creating a new database
     6. The private database
     7. Other database management options


Opening a model, running a simulation, animating and viewing results

     1. Open McPherson strut assembly
     2. Zoom, pan, rotate, shaded/wireframe, icons on/off
     3. Perform parallel wheel travel
     4. Animate results
     5. Plot toe gradient 
     6. Change hardpoint 
     7. Re-run analysis 
     8. Animate
     9. Overlay toe gradient
    10. Save model and exit

File structure

      1. Data hierarchy 
               i. Template 
                        a. Building a template (will not be covered)
              ii. Subsystem
                        a. Building a suspension subsystem
                        b. Building a steering subsystem  
             iii. Assembly 
                        a. Assembling the subsystems
      2. User modes
      3. Testrig
      4. Adams file structure


The postprocesor

        1. Plotting results
                i. All graph options
               ii. Exporting a plot configuration file
              iii. Creating plots with plot configuration files
        2. Animating results
                i. All animating options
               ii. Exporting a movie
        3. Importing files
                i. Result files
               ii. Test data
        4. Exporting files
                i. Numeric data
               ii. Spreadsheets 


Elements of an Adams car model - suspension, steering, brakes, powertrain

     1. Parts
     2. Geometries
     3. Hardpoints
     4. Springs
     5. Joints
     6. Bushings
     7. Stoppers
     8. Dampers
     9. Tires
     10. Steering assist
     11. Roll bars
     12. Suspension parameters
     13. Other useful options
               i. Aggregate mass
              ii. Database navigator
             iii. Graphical topology


Types of analysis

    1. Displacement driven
              i. Parallel wheel travel
             ii. Opposite wheel travel
            iii. Single wheel travel
            iv. Roll and vertical force
             v. Steering
    2. Force driven
              i. Static loads
                      a. Longitudinal
                      b. Lateral
                      c. Vertical
                      d. Moments
             ii. Dynamic loads
    3. External files - load cases

Who can take this course?


Engineering students in the domains of either mechanical engineering or automotive engineering who are in their 5th semester or higher.

The following skills can be beneficial but not a pre-requisite

  • Formula SAE or BAJA experience
  • Basic coursework in kinematics/dynamics of machinery
  • Introductory courses in automotive suspension engineering


Engineers working in the following domains of vehicle dynamics will benefit from this course:

  • Multi-body dynamics simulation
  • Suspension product development
  • Chassis testing