All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
Introduction: The Reynolds-averaged Navier–Stokes equations (or RANS equations) are time-averaged equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities,…
Aadil Shaikh
updated on 18 Sep 2020
Introduction:
The Reynolds-averaged Navier–Stokes equations (or RANS equations) are time-averaged equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. The RANS equations are primarily used to describe turbulent flows. These equations can be used with approximations based on knowledge of the properties of flow turbulence to give approximate time-averaged solutions to the Navier-stokes equations
Due to fluctuating velocity component, the fluid layers experience additional turbulent shear stress, known as Reynolds stresses. There is momentum exchange due to convective transport by the eddies which causes faster moving fluid layers to be decelerated and slower moving layers to be accelerated. And in presence of temperature or concentration gradients, the eddy motions will also generate turbulent heat or species concentration fluxes.
Derivation:
In order to be able to take a time-average, the momentary value is decomposed into parts mean value and fluctuating value. This is shown graphically in Figure 1.
keywords - TURBULENCE, AERODYNAMICS, CFD, CAE, NUMERICAL-ANALYSIS, RANS, REYNOLDS STRESS.
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Flow over a Throttle body - Using CONVERGE CFD
I. Introduction: In this Project, A Steady & Transient state simulation is done of a Flow through an Elbow joint consisting of a throttle valve. The steady state case is solved with the Throttle valve fully open until convergence is reached. While the Transient case is ran with the throttle valve rotating i.e…
18 Sep 2020 08:29 PM IST
Literature review – RANS Derivation and analysis
Introduction: The Reynolds-averaged Navier–Stokes equations (or RANS equations) are time-averaged equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities,…
18 Sep 2020 08:28 PM IST
C.H.T Analysis on a Graphic card using ANSYS FLUENT
I. Introduction : In this project, A steady state conjugate heat transfer analysis on a Graphic card model is done. Graphic card has become an everyday used object and a very importat part of any computer system, laptops etc. This product is mass produced daily in millions and has made computers exceptionally efficient.…
18 Sep 2020 08:23 PM IST
Aerodynamics : Flow around the Ahmed Body using ANSYS FLUENT
I. Introduction : Automotive aerodynamics comprises of the study of aerodynamics of road vehicles. Its main goals are reducing drag, minimizing noise emission, improving fuel economy, preventing undesired lift forces and minimising other causes of aerodynamic instability at high speeds. Also, in order to maintain…
18 Sep 2020 08:21 PM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.