All Courses
All Courses
Courses by Software
Courses by Semester
Courses by Domain
Tool-focused Courses
Machine learning
POPULAR COURSES
Success Stories
1.Question¶ import pandas as pdimport numpy as np Customer_Detail=pd.read_csv('customer_details.csv')Customer_Policy=pd.read_csv('customer_policy_details.csv') Customer_Detail.columns=['Customer_id','Gender','Age','Driving Licence Present','Region Code','Previously Insured','Vehicle age','Vehicle Damage'] Customer_Policy.columns=['Customer_id','Annual…
Sushant Ovhal
updated on 20 Aug 2022
import pandas as pd
import numpy as np
Customer_Detail=pd.read_csv('customer_details.csv')
Customer_Policy=pd.read_csv('customer_policy_details.csv')
Customer_Detail.columns=['Customer_id','Gender','Age','Driving Licence Present','Region Code','Previously Insured','Vehicle age','Vehicle Damage']
Customer_Policy.columns=['Customer_id','Annual Premium(in Rs)','Sales Channel code','Vintage', 'Response']
Customer_Detail
Ans:
Customer_id | Gender | Age | Driving Licence Present | Region Code | Previously Insured | Vehicle age | Vehicle Damage | |
---|---|---|---|---|---|---|---|---|
0 | 1.0 | Male | 44.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
1 | 2.0 | Male | 76.0 | 1.0 | 3.0 | 0.0 | 1-2 Year | No |
2 | 3.0 | Male | 47.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
3 | 4.0 | Male | 21.0 | 1.0 | 11.0 | 1.0 | < 1 Year | No |
4 | 5.0 | Female | 29.0 | 1.0 | 41.0 | 1.0 | < 1 Year | No |
... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | Male | 74.0 | 1.0 | 26.0 | 1.0 | 1-2 Year | No |
381105 | 381106.0 | Male | 30.0 | 1.0 | 37.0 | 1.0 | < 1 Year | No |
381106 | 381107.0 | Male | 21.0 | 1.0 | 30.0 | 1.0 | < 1 Year | No |
381107 | 381108.0 | Female | 68.0 | 1.0 | 14.0 | 0.0 | > 2 Years | Yes |
381108 | 381109.0 | Male | 46.0 | 1.0 | 29.0 | 0.0 | 1-2 Year | No |
381109 rows × 8 columns
Customer_Policy
Ans:
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 30170.0 | 26.0 | 88.0 | 0.0 |
381105 | 381106.0 | 40016.0 | 152.0 | 131.0 | 0.0 |
381106 | 381107.0 | 35118.0 | 160.0 | 161.0 | 0.0 |
381107 | 381108.0 | 44617.0 | 124.0 | 74.0 | 0.0 |
381108 | 381109.0 | 41777.0 | 26.0 | 237.0 | 0.0 |
381109 rows × 5 columns
Customer_Detail.isnull().sum()
Ans:
Customer_id 386 Gender 368 Age 368 Driving Licence Present 393 Region Code 392 Previously Insured 381 Vehicle age 381 Vehicle Damage 407 dtype: int64
Customer_Detail.fillna(Customer_Detail.mean())
Ans:
Customer_id | Gender | Age | Driving Licence Present | Region Code | Previously Insured | Vehicle age | Vehicle Damage | |
---|---|---|---|---|---|---|---|---|
0 | 1.0 | Male | 44.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
1 | 2.0 | Male | 76.0 | 1.0 | 3.0 | 0.0 | 1-2 Year | No |
2 | 3.0 | Male | 47.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
3 | 4.0 | Male | 21.0 | 1.0 | 11.0 | 1.0 | < 1 Year | No |
4 | 5.0 | Female | 29.0 | 1.0 | 41.0 | 1.0 | < 1 Year | No |
... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | Male | 74.0 | 1.0 | 26.0 | 1.0 | 1-2 Year | No |
381105 | 381106.0 | Male | 30.0 | 1.0 | 37.0 | 1.0 | < 1 Year | No |
381106 | 381107.0 | Male | 21.0 | 1.0 | 30.0 | 1.0 | < 1 Year | No |
381107 | 381108.0 | Female | 68.0 | 1.0 | 14.0 | 0.0 | > 2 Years | Yes |
381108 | 381109.0 | Male | 46.0 | 1.0 | 29.0 | 0.0 | 1-2 Year | No |
381109 rows × 8 columns
Customer_Policy.isnull().sum()
Customer_id 387 Annual Premium(in Rs) 346 Sales Channel code 400 Vintage 388 Response 361 dtype: int64
Customer_Policy.fillna(Customer_Policy.mean())
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 30170.0 | 26.0 | 88.0 | 0.0 |
381105 | 381106.0 | 40016.0 | 152.0 | 131.0 | 0.0 |
381106 | 381107.0 | 35118.0 | 160.0 | 161.0 | 0.0 |
381107 | 381108.0 | 44617.0 | 124.0 | 74.0 | 0.0 |
381108 | 381109.0 | 41777.0 | 26.0 | 237.0 | 0.0 |
381109 rows × 5 columns
Customer_Detail['Gender'].fillna(Customer_Detail['Gender'].mode()[0],inplace=True
Customer_Detail['Vehicle age'].fillna(Customer_Detail['Vehicle age'].mode()[0],inplace=True)
Customer_Detail['Region Code'].fillna(Customer_Detail['Region Code'].mode()[0],inplace=True)
Customer_Policy.fillna(Customer_Policy).mode()
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 2630.0 | 152.0 | 256.0 | 0.0 |
1 | 2.0 | NaN | NaN | NaN | NaN |
2 | 3.0 | NaN | NaN | NaN | NaN |
3 | 4.0 | NaN | NaN | NaN | NaN |
4 | 5.0 | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... |
380717 | 381105.0 | NaN | NaN | NaN | NaN |
380718 | 381106.0 | NaN | NaN | NaN | NaN |
380719 | 381107.0 | NaN | NaN | NaN | NaN |
380720 | 381108.0 | NaN | NaN | NaN | NaN |
380721 | 381109.0 | NaN | NaN | NaN | NaN |
380722 rows × 5 columns
Customer_Detail.dropna(subset=["Customer_id"],inplace=True)
Customer_Policy.dropna(subset=["Customer_id"],inplace=True)
Q1=Customer_Detail.quantile(0.25)
Q3=Customer_Policy.quantile(0.75)
print(Q1)
Ans:
Customer_id 95269.5 Age 25.0 Driving Licence Present 1.0 Region Code 15.0 Previously Insured 0.0 Name: 0.25, dtype: float64
print(Q3)
Ans:
Customer_id 285818.75 Annual Premium(in Rs) 39401.75 Sales Channel code 152.00 Vintage 227.00 Response 0.00 Name: 0.75, dtype: float64
IQR=Q3-Q1
lower=Q1-(1.5*IQR)
upper=Q3+(1.5*IQR)
Customer_Detail[(Customer_Detail<lower) | (Customer_Detail>upper)].sum()
Customer_Policy[(Customer_Policy<lower) | (Customer_Policy>upper)].sum()
Customer_Detail.describe()
Customer_id | Age | Driving Licence Present | Region Code | Previously Insured | |
---|---|---|---|---|---|
count | 380723.000000 | 380357.000000 | 380331.000000 | 380723.000000 | 380342.000000 |
mean | 190548.776244 | 38.822788 | 0.997868 | 26.391090 | 0.458259 |
std | 110016.805160 | 15.512284 | 0.046128 | 13.223772 | 0.498255 |
min | 1.000000 | 20.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 95269.500000 | 25.000000 | 1.000000 | 15.000000 | 0.000000 |
50% | 190543.000000 | 36.000000 | 1.000000 | 28.000000 | 0.000000 |
75% | 285822.500000 | 49.000000 | 1.000000 | 35.000000 | 1.000000 |
max | 381109.000000 | 85.000000 | 1.000000 | 52.000000 | 1.000000 |
Customer_Policy.describe()
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
count | 380722.000000 | 380378.000000 | 380322.000000 | 380334.000000 | 380361.000000 |
mean | 190547.491663 | 30563.999774 | 112.036687 | 154.347192 | 0.122526 |
std | 110013.824148 | 17197.918886 | 54.205529 | 83.670742 | 0.327892 |
min | 1.000000 | 2630.000000 | 1.000000 | 10.000000 | 0.000000 |
25% | 95276.250000 | 24407.000000 | 29.000000 | 82.000000 | 0.000000 |
50% | 190536.500000 | 31667.000000 | 133.000000 | 154.000000 | 0.000000 |
75% | 285818.750000 | 39401.750000 | 152.000000 | 227.000000 | 0.000000 |
max | 381109.000000 | 540165.000000 | 163.000000 | 299.000000 | 1.000000 |
Customer_Policy['Annual Premium(in Rs)']=Customer_Policy['Annual Premium(in Rs)'].astype('float')
Q1=Customer_Policy[['Annual Premium(in Rs)']].quantile(0.25)
Q2=Customer_Policy[['Annual Premium(in Rs)']].quantile(0.75)
((Customer_Policy[['Annual Premium(in Rs)']]<lower) | (Customer_Policy[['Annual Premium(in Rs)']]>upper)).sum
Customer_Policy['Response']=Customer_Policy['Response'].astype('float')
Q1=Customer_Policy[['Response']].quantile(0.25)
Q2=Customer_Policy[['Response']].quantile(0.75)
((Customer_Policy[['Response']]<lower)) | (Customer_Policy[['Response']]>upper).sum()
Customer_Detail.apply(lambda x:x.str.strip() if x.dtype=="object" else x)
Customer_id | Gender | Age | Driving Licence Present | Region Code | Previously Insured | Vehicle age | Vehicle Damage | |
---|---|---|---|---|---|---|---|---|
0 | 1.0 | Male | 44.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
1 | 2.0 | Male | 76.0 | 1.0 | 3.0 | 0.0 | 1-2 Year | No |
2 | 3.0 | Male | 47.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
3 | 4.0 | Male | 21.0 | 1.0 | 11.0 | 1.0 | < 1 Year | No |
4 | 5.0 | Female | 29.0 | 1.0 | 41.0 | 1.0 | < 1 Year | No |
... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | Male | 74.0 | 1.0 | 26.0 | 1.0 | 1-2 Year | No |
381105 | 381106.0 | Male | 30.0 | 1.0 | 37.0 | 1.0 | < 1 Year | No |
381106 | 381107.0 | Male | 21.0 | 1.0 | 30.0 | 1.0 | < 1 Year | No |
381107 | 381108.0 | Female | 68.0 | 1.0 | 14.0 | 0.0 | > 2 Years | Yes |
381108 | 381109.0 | Male | 46.0 | 1.0 | 29.0 | 0.0 | 1-2 Year | No |
380723 rows × 8 columns
Customer_Policy.apply(lambda x: x.str.strip() if x.dtype=="object" else x)
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 30170.0 | 26.0 | 88.0 | 0.0 |
381105 | 381106.0 | 40016.0 | 152.0 | 131.0 | 0.0 |
381106 | 381107.0 | 35118.0 | 160.0 | 161.0 | 0.0 |
381107 | 381108.0 | 44617.0 | 124.0 | 74.0 | 0.0 |
381108 | 381109.0 | 41777.0 | 26.0 | 237.0 | 0.0 |
380722 rows × 5 columns
Customer_Detail.apply(lambda x:x.astype(str).str.upper())
Customer_Detail
Ans:
Customer_id | Gender | Age | Driving Licence Present | Region Code | Previously Insured | Vehicle age | Vehicle Damage | |
---|---|---|---|---|---|---|---|---|
0 | 1.0 | Male | 44.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
1 | 2.0 | Male | 76.0 | 1.0 | 3.0 | 0.0 | 1-2 Year | No |
2 | 3.0 | Male | 47.0 | 1.0 | 28.0 | 0.0 | > 2 Years | Yes |
3 | 4.0 | Male | 21.0 | 1.0 | 11.0 | 1.0 | < 1 Year | No |
4 | 5.0 | Female | 29.0 | 1.0 | 41.0 | 1.0 | < 1 Year | No |
... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | Male | 74.0 | 1.0 | 26.0 | 1.0 | 1-2 Year | No |
381105 | 381106.0 | Male | 30.0 | 1.0 | 37.0 | 1.0 | < 1 Year | No |
381106 | 381107.0 | Male | 21.0 | 1.0 | 30.0 | 1.0 | < 1 Year | No |
381107 | 381108.0 | Female | 68.0 | 1.0 | 14.0 | 0.0 | > 2 Years | Yes |
381108 | 381109.0 | Male | 46.0 | 1.0 | 29.0 | 0.0 | 1-2 Year | No |
380723 rows × 8 columns
Customer_Detail2=pd.get_dummies(Customer_Detail)
Customer_Detail2
Customer_id | Age | Driving Licence Present | Region Code | Previously Insured | Gender_Female | Gender_Male | Vehicle age_1-2 Year | Vehicle age_< 1 Year | Vehicle age_> 2 Years | Vehicle Damage_No | Vehicle Damage_Yes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 44.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 2.0 | 76.0 | 1.0 | 3.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
2 | 3.0 | 47.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
3 | 4.0 | 21.0 | 1.0 | 11.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
4 | 5.0 | 29.0 | 1.0 | 41.0 | 1.0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 74.0 | 1.0 | 26.0 | 1.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
381105 | 381106.0 | 30.0 | 1.0 | 37.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
381106 | 381107.0 | 21.0 | 1.0 | 30.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
381107 | 381108.0 | 68.0 | 1.0 | 14.0 | 0.0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
381108 | 381109.0 | 46.0 | 1.0 | 29.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
380723 rows × 12 columns
Customer_Policy2=pd.get_dummies(Customer_Policy)
Customer_Policy2
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 30170.0 | 26.0 | 88.0 | 0.0 |
381105 | 381106.0 | 40016.0 | 152.0 | 131.0 | 0.0 |
381106 | 381107.0 | 35118.0 | 160.0 | 161.0 | 0.0 |
381107 | 381108.0 | 44617.0 | 124.0 | 74.0 | 0.0 |
381108 | 381109.0 | 41777.0 | 26.0 | 237.0 | 0.0 |
380722 rows × 5 columns
Customer_Detail2.drop_duplicates()
Customer_id | Age | Driving Licence Present | Region Code | Previously Insured | Gender_Female | Gender_Male | Vehicle age_1-2 Year | Vehicle age_< 1 Year | Vehicle age_> 2 Years | Vehicle Damage_No | Vehicle Damage_Yes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 44.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 2.0 | 76.0 | 1.0 | 3.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
2 | 3.0 | 47.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
3 | 4.0 | 21.0 | 1.0 | 11.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
4 | 5.0 | 29.0 | 1.0 | 41.0 | 1.0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 74.0 | 1.0 | 26.0 | 1.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
381105 | 381106.0 | 30.0 | 1.0 | 37.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
381106 | 381107.0 | 21.0 | 1.0 | 30.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
381107 | 381108.0 | 68.0 | 1.0 | 14.0 | 0.0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
381108 | 381109.0 | 46.0 | 1.0 | 29.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
380723 rows × 12 columns
Customer_id | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|
0 | 1.0 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... |
381104 | 381105.0 | 30170.0 | 26.0 | 88.0 | 0.0 |
381105 | 381106.0 | 40016.0 | 152.0 | 131.0 | 0.0 |
381106 | 381107.0 | 35118.0 | 160.0 | 161.0 | 0.0 |
381107 | 381108.0 | 44617.0 | 124.0 | 74.0 | 0.0 |
381108 | 381109.0 | 41777.0 | 26.0 | 237.0 | 0.0 |
380722 rows × 5 columns
Master_Table=Customer_Detail2.merge(Customer_Policy2,on=["Customer_id"])
Master_Table
Customer_id | Age | Driving Licence Present | Region Code | Previously Insured | Gender_Female | Gender_Male | Vehicle age_1-2 Year | Vehicle age_< 1 Year | Vehicle age_> 2 Years | Vehicle Damage_No | Vehicle Damage_Yes | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.0 | 44.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 40454.0 | 26.0 | 217.0 | 1.0 |
1 | 2.0 | 76.0 | 1.0 | 3.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 33536.0 | 26.0 | 183.0 | 0.0 |
2 | 3.0 | 47.0 | 1.0 | 28.0 | 0.0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 38294.0 | 26.0 | 27.0 | 1.0 |
3 | 4.0 | 21.0 | 1.0 | 11.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 28619.0 | 152.0 | 203.0 | 0.0 |
4 | 5.0 | 29.0 | 1.0 | 41.0 | 1.0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 27496.0 | 152.0 | 39.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
380331 | 381105.0 | 74.0 | 1.0 | 26.0 | 1.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 30170.0 | 26.0 | 88.0 | 0.0 |
380332 | 381106.0 | 30.0 | 1.0 | 37.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 40016.0 | 152.0 | 131.0 | 0.0 |
380333 | 381107.0 | 21.0 | 1.0 | 30.0 | 1.0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 35118.0 | 160.0 | 161.0 | 0.0 |
380334 | 381108.0 | 68.0 | 1.0 | 14.0 | 0.0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 44617.0 | 124.0 | 74.0 | 0.0 |
380335 | 381109.0 | 46.0 | 1.0 | 29.0 | 0.0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 41777.0 | 26.0 | 237.0 | 0.0 |
380336 rows × 16 columns
Master_Table.groupby(['Gender_Male']).mean()['Annual Premium(in Rs)']
Ans:
Gender_Male 0 30491.959528 1 30623.670581 Name: Annual Premium(in Rs), dtype: float64
Master_Table.groupby(['Gender_Female']).mean()['Annual Premium(in Rs)']
Ans:
Gender_Female 0 30623.670581 1 30491.959528 Name: Annual Premium(in Rs), dtype: float64
Master_Table.groupby(['Age']).mean()['Annual Premium(in Rs)']
Age 20.0 26920.517153 21.0 30564.476130 22.0 30824.039423 23.0 30688.699065 24.0 31184.306152 ... 81.0 31201.571429 82.0 37705.379310 83.0 31012.727273 84.0 35440.818182 85.0 29792.363636 Name: Annual Premium(in Rs), Length: 66, dtype: float64
Master_Table['Gender_Male'].value_counts()
1 205851 0 174485 Name: Gender_Male, dtype: int64
Master_Table['Gender_Female'].value_counts()
0 205851 1 174485 Name: Gender_Female, dtype: int64
Master_Table.groupby(['Vehicle age_1-2 Year']).mean()['Annual Premium(in Rs)']
Vehicle age_1-2 Year 0 30606.151077 1 30524.590052 Name: Annual Premium(in Rs), dtype: float64
Master_Table.groupby(['Vehicle age_< 1 Year']).mean()['Annual Premium(in Rs)']
Vehicle age_< 1 Year 0 30903.960198 1 30115.361397 Name: Annual Premium(in Rs), dtype: float64
Master_Table.groupby(['Vehicle age_> 2 Years']).mean()['Annual Premium(in Rs)']
Ans:
Vehicle age_> 2 Years 0 30340.043557 1 35661.355606 Name: Annual Premium(in Rs), dtype: float64
import numpy as np
Master_Table.corr()
Customer_id | Age | Driving Licence Present | Region Code | Previously Insured | Gender_Female | Gender_Male | Vehicle age_1-2 Year | Vehicle age_< 1 Year | Vehicle age_> 2 Years | Vehicle Damage_No | Vehicle Damage_Yes | Annual Premium(in Rs) | Sales Channel code | Vintage | Response | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Customer_id | 1.000000 | 0.001669 | -0.000475 | -0.000727 | 0.002425 | -0.001153 | 0.001153 | 0.001489 | -0.001337 | -0.000406 | 0.001523 | -0.001436 | 0.003087 | -0.002922 | -0.000603 | -0.001349 |
Age | 0.001669 | 1.000000 | -0.079770 | 0.042524 | -0.254664 | -0.145127 | 0.145127 | 0.692334 | -0.787152 | 0.220577 | -0.267226 | 0.267260 | 0.067778 | -0.577861 | -0.001218 | 0.111186 |
Driving Licence Present | -0.000475 | -0.079770 | 1.000000 | -0.001062 | 0.014959 | 0.018318 | -0.018318 | -0.037506 | 0.040221 | -0.005968 | 0.016550 | -0.016649 | -0.012027 | 0.043864 | -0.000851 | 0.010303 |
Region Code | -0.000727 | 0.042524 | -0.001062 | 1.000000 | -0.024604 | -0.000503 | 0.000503 | 0.037779 | -0.043952 | 0.014508 | -0.027960 | 0.028062 | -0.010700 | -0.042414 | -0.002752 | 0.010471 |
Previously Insured | 0.002425 | -0.254664 | 0.014959 | -0.024604 | 1.000000 | 0.081909 | -0.081909 | -0.278771 | 0.358379 | -0.191216 | 0.823324 | -0.823328 | 0.004440 | 0.219312 | 0.002397 | -0.341191 |
Gender_Female | -0.001153 | -0.145127 | 0.018318 | -0.000503 | 0.081909 | 1.000000 | -1.000000 | -0.147153 | 0.165755 | -0.043059 | 0.091462 | -0.091447 | -0.003818 | 0.110926 | 0.002450 | -0.052542 |
Gender_Male | 0.001153 | 0.145127 | -0.018318 | 0.000503 | -0.081909 | -1.000000 | 1.000000 | 0.147153 | -0.165755 | 0.043059 | -0.091462 | 0.091447 | 0.003818 | -0.110926 | -0.002450 | 0.052542 |
Vehicle age_1-2 Year | 0.001489 | 0.692334 | -0.037506 | 0.037779 | -0.278771 | -0.147153 | 0.147153 | 1.000000 | -0.918807 | -0.220431 | -0.284118 | 0.284076 | -0.002369 | -0.507877 | -0.002672 | 0.164036 |
Vehicle age_< 1 Year | -0.001337 | -0.787152 | 0.040221 | -0.043952 | 0.358379 | 0.165755 | -0.165755 | -0.918807 | 1.000000 | -0.182465 | 0.369986 | -0.369995 | -0.022725 | 0.571054 | 0.002437 | -0.209615 |
Vehicle age_> 2 Years | -0.000406 | 0.220577 | -0.005968 | 0.014508 | -0.191216 | -0.043059 | 0.043059 | -0.220431 | -0.182465 | 1.000000 | -0.206575 | 0.206703 | 0.062055 | -0.146110 | 0.000633 | 0.109413 |
Vehicle Damage_No | 0.001523 | -0.267226 | 0.016550 | -0.027960 | 0.823324 | 0.091462 | -0.091462 | -0.284118 | 0.369986 | -0.206575 | 1.000000 | -0.997867 | -0.009196 | 0.223998 | 0.001908 | -0.354015 |
Vehicle Damage_Yes | -0.001436 | 0.267260 | -0.016649 | 0.028062 | -0.823328 | -0.091447 | 0.091447 | 0.284076 | -0.369995 | 0.206703 | -0.997867 | 1.000000 | 0.009259 | -0.224008 | -0.001960 | 0.353969 |
Annual Premium(in Rs) | 0.003087 | 0.067778 | -0.012027 | -0.010700 | 0.004440 | -0.003818 | 0.003818 | -0.002369 | -0.022725 | 0.062055 | -0.009196 | 0.009259 | 1.000000 | -0.113441 | -0.000671 | 0.022295 |
Sales Channel code | -0.002922 | -0.577861 | 0.043864 | -0.042414 | 0.219312 | 0.110926 | -0.110926 | -0.507877 | 0.571054 | -0.146110 | 0.223998 | -0.224008 | -0.113441 | 1.000000 | -0.000151 | -0.139071 |
Vintage | -0.000603 | -0.001218 | -0.000851 | -0.002752 | 0.002397 | 0.002450 | -0.002450 | -0.002672 | 0.002437 | 0.000633 | 0.001908 | -0.001960 | -0.000671 | -0.000151 | 1.000000 | -0.001094 |
Response | -0.001349 | 0.111186 | 0.010303 | 0.010471 | -0.341191 | -0.052542 | 0.052542 | 0.164036 | -0.209615 | 0. |
Leave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Project 1 - Analyzing the Education trends in Tamilnadu
This dashboard empowers mission driven organizations to harness the power of data visualization for social change. Women are tracked away from science and mathematics throughout their education, limiting their training and options to go into these fields as adults. The data set contains the data of women graduated by years,…
14 Nov 2023 01:32 PM IST
Project 1 - English Dictionary App & Library Book Management System
Project 1) English dictionary app and Library Book Management system
06 Nov 2023 04:04 PM IST
Project 1 - Implement and deploy CNN model in real-time using python on Fashion MNIST dataset
Implement and deploy CNN model in real-time using python on Fashion MNIST dataset
20 Dec 2022 07:04 AM IST
Project 2
Project 2
30 Nov 2022 11:41 AM IST
Related Courses
Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.
© 2025 Skill-Lync Inc. All Rights Reserved.